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THE NUMBER OF STABLE MATCHINGS IN MODELS 
OF THE GALE–SHAPLEY TYPE 

WITH PREFERENCES GIVEN BY PARTIAL ORDERS 

From the famous Gale–Shapley theorem we know that each classical marriage problem admits at 
least one stable matching. This fact has inspired researchers to search for the maximum number of 
possible stable matchings, which is equivalent to finding the minimum number of unstable matchings 
among all such problems of size n. In this paper, we deal with this issue for the Gale–Shapley model 
with preferences represented by arbitrary partial orders. Also, we discuss this model in the context of 
the classical Gale–Shapley model. 
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1. Preliminaries 

The problem of determining the maximum number of possible stable matchings 
among all the classical marriage problems of size n was posed by Knuth [6] and still 
remains an open question. Knuth established that this number exceeds 2n/2 for n ≥ 2 and 
Gusfield and Irving showed [3] that when n is a power of 2 it is at least 2n–1, which can 

be improved to (2.28)n/(1 + 3) based on the construction given by Irving and Leather 

[4]. Some properties of this number analyzed as a function of the problem size were 
considered in [10]. The first upper bound on this number was derived in [1]. It approxi-
mately equals three quarters of all n! possible matchings and is still far from the ex-
pected number of stable matchings, which is asymptotic to e–1nlnn for n   [8]. 

In many practical applications of the marriage problem, the lists of preferences for 
prospective partners allow incomparable elements. In this context, consider the fol-
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lowing example. Let us assume that a company begins work on n different computer 
programming projects simultaneously, employing at the same time n people as project 
managers. These people possess such skills as: competence in human resource man-
agement, mobility, knowledge of spoken and programming languages, knowledge of 
the topic sets connected to the projects, access to different data bases. The task of the 
company management is to assign managers to the projects, so that each of them is 
responsible for exactly one project. Such an assignment is considered stable if there 
exists no unassociated pair (manager i and project j) such that manager i would prefer 
managing project j rather than the one assigned to him and, moreover, manager i 
would be better for project j than the manager who is presently assigned. Note that it 
may be hard to decide who is a better candidate for being the manager of a given pro-
ject, because some of the managers’ attributes are not comparable. It can happen that 
project i needs both the knowledge of a particular programming language and the abil-
ity to negotiate in Finnish. Assume that no manager can do both things, but there are 
two, let us say ml, mk who each possesses one of these skills. This fact shows the in-
comparability of ml and mk with respect to project i. Similarly, specific features of the 
projects can make two of them incomparable for a given manager. Usually, many at-
tributes are needed to manage a given project and people can possess some of them. 
This means that the preferences of each manager are described by a partial order over 
the set of projects. Similarly, the appropriateness of a manager for a given project is 
given by a partial order over the set of all managers. In this situation, a problem of 
size n involves finding a matching between n managers and n projects with 2n indexed 
partially ordered sets, where n are partial orders described over the set of projects and 
n over the set of managers.  

In this paper, we investigate the minimum number of unstable matchings in 
models of the Gale–Shapley type with preferences that are not necessarily linear. 
Among other things, we explain the difference between the classical model and the 
model considered in this paper. We show that if preferences are given by arbitrary 
partial orders, then, unlike the classical model, there is no upper bound on the num-
ber of stable matchings concerning all the problems of size n. On the other hand, if 
all 2n Hasse diagrams representing the preferences (for managers and for projects) 
have pairwise the same shape for two different problems of size n (they are pairwise 
isomorphic), then the number of stable matchings for both these problems can be 
bounded from above by the same expression (Theorem 1). In particular, we give 
a simpler form of this expression in the case when all 4n Hasse diagrams for two 
different problems of order n are isomorphic (Corollary 3). Note that the classical 
Gale–Shapley model is of this last kind, because all 4n Hasse diagrams for any two 
problems of size n are isomorphic (in fact they are represented by linear orders over 
an n-element set). 
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 Since people have different and incomparable attributes, the example mentioned 
above can be written in the language of a marriage problem. We use this classical 
description in the remaining part of the paper.  

2. Main results 

In general, we follow the notation and terminology of [9]. Let W be a set of 
n women w1, ..., wn and M be a set of n men m1, ..., mn and for a natural number n, let 
the notation [n] denote the set {1, ..., n}. Next, suppose that for a fixed j  [n], the 
partial order p(mj) represents the preferences of the man mj over the set of women. 
This means that for given s, k, j  [n] we have (ws, wk)  P(mj) if and only if either s = k 
or mj prefers ws to wk. It follows that (ws, wk)  P(mj) if and only if k  s and either  
(wk, ws)  P(mj) or ws and wk are incomparable for mj. Similarly, for fixed i  [n], 
a partial order P(wi) represents the preferences of the woman wi over the set of men. 
Thus preferences for prospective partners are represented by the set P = {P(m1), 
..., P(mn), P(w1), ..., P(wn)}. Next, a triple (M, W; P) denotes a specific marriage mar-
ket (of size n). It should be mentioned here that, according to this model, we do not 
allow any individual to remain single and assume that all prospective partners are pre-
ferred to the option of being single. Moreover, all preferences are transitive, but two 
alternatives can be incomparable. This means that individuals are not necessarily ra-
tional. 

A matching  is an arbitrary bijection of W onto M. For simplicity, we write (i) = j 
instead of (wi) = mj. By  (i1, j1, i2, j2) we denote the set of all matchings  satisfying 
(i1) = j1 and (i2) = j2. In this description, we implicitly assume that i1  i2 and  
j1  j2. A pair wi, mj is said to block a matching   (i, j1, i2, j) in(M, W; P) if
(mj, mj1)  P(wi) and(wi, wi2)  P(mj). A matching is unstable for (M, W; P) if there 
exists at least one pair blocking  in (M, W; P), otherwise  is stable for (M, W; P). 

For a given marriage market (M, W; P) of size n and for i, j  [n], let ai, j = {s: (mj, ms) 
 P(wi) and s  j} and bi, j = {s: (wj, ws)  P(mi) and s  j}. The number ai, j gives us 
information on how many of the men are worse than mj according to wi, and bi, j tells 
how many of the women are worse than wj according to mi. Next, for fixed i  [n] and 
P(mi), by Mi we denote the set of all linear orders over W, say 

1
( , ..., ),i i

ns s
w w  such that 

1, ,
... .i i

ni s i s
b b   Similarly, for fixed i  [n] and P(wi), by Wi we denote the set of all 

linear orders over M, say 
1

( , ..., ),i i
ns s

m m  such that 
1, ,

... .i i
ni s i s

a a   

Proposition 1. Let (M, W; P) be a marriage market of size n and let P* be an arbi-
trary set {P*(m1), ..., P

*(mn), P
*(w1), ..., P

*(wn)} such that for all i  [n] the conditions 
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P*(mi)  Mi and P*(wi)  Wi are satisfied. If a matching  is stable for (M, W; P), then 
 is stable for (M, W; P). 

Proof. Suppose that Proposition 1 does not hold, i.e.  is stable for (M, W; P*) and 
unstable for (M, W; P). It follows that there exists a pair ws, mk blocking  when pref-
erences are given by P, which consequently means that there exists a pair (j1, j2) such 
that   (s, j1, i2, k) and 

1
( , )k jm m  P(ms) and 

2
( , )s iw w  P(wk) and also k  j1 and  

s . From the definition of the numbers ai, j, bi, j, we obtain as, k > as, j1 and bk, s > bk,i2. 

This yields 
1

( , )k jm m P*(ws) and 
2

( , )s iw w P*(mk). Using the definition of a block-

ing pair once again, we obtain that ws, mk blocks  when the preferences are given by 
P*, contrary to the initial assumption. 

Let (M, W; P) denote the set of all stable matchings for the marriage market  
(M, W; P). Taking into account Proposition 1 we immediately obtain the following 
result: 

Corollary 1. If (M, W; P) is a marriage market of size n, then (M, W; P*)   
(M, W; P), where the union is taken over all P* = {P*(m1), ..., P

*(mn), P
*(w1), ..., P

*(wn)} 
such that P*(mi) iand P*(wi) Wi for each i  [n]. 

From Gale and Shapley [2] we know that if all the partial orders in P are linear, 
then there exists at least one stable matching for (M, W; P). In the light of the above 
corollary, this fact implies the next result. 

Corollary 2. If (M, W; P) is a marriage market of size n, then there exists at least 
one stable matching for (M, W; P). 

Unfortunately, the conversion to Proposition 1 is not true. For instance in Fig. 1 we 
present a set P = {P(m1), P(m2), P(m3), P(w1), P(w2), P(w3)} of partial orders, such that 
the matching  defined by (i) = i for each permissible i, is stable for (M, W; P). Moreo-
ver, is unstable for any marriage market (M, W; P*) such that P* = {P*(m1), P

*(m2), 
P*(m3), P

*(w1), P
*(w2), P

*(w3)},  where P*(mi)  Mi, P
*(wi)  Wi with i  {1, 2, 3}. In-

deed, for each P*(m1)  M1 we have (w2, w1)  P*(m1) and for each P*(w2) w2 we 
have (m1, m2) P*(w2). Thus the pair w2, m1 blocks  in the marriage market (M, W; P*). 

 

Fig. 1. An illustration of the fact that the containment in Proposition 1 can be strict 
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Of course there are many examples for which the inclusion in Corollary 1 can be 
substituted by an equality. Analysis of particular marriage markets having preferences 
with ties gives us infinitely many such examples. Markets of this type have been con-
sidered in many papers, especially from the aspect of the existence of stable matchings 
[5, 7]. 

A partial order  over [n] is called simple if there exists a partition of [n] into 
k parts X1, ..., Xk, such that (a, b)  if and only if a = b or a Xi, b Xj and i < j. 

Proposition 2. Let (M, W; P) be a marriage market of order n such that all the par-
tial orders from P are simple. If  is a stable matching for (M, W; P), then there exists 
a set P* consisting of linear orders P*(m1), ..., P

*(mn), P
*(w1), ..., P

*(wn) such that P*(mi) 
Mi and P*(wi) Wi for i [n] and  is stable for (M, W; P*). 

Proof. Let i, p  [n] satisfy (i) = p. Because P(mp), P(wi) are simple, there exist 
partitions X1, ..., Xk and Y1, ..., Yq of W and M, respectively, and indices s  [k], j  [q] 
such that wi  Xs and mp  Yj. In addition, we know that all the elements of Xs are 
incomparable based on P(mp) and all the elements of Yj are incomparable based on 
P(wi). We construct P*(mp) Mp and P*(wi) Wi in an arbitrary way that satisfies  
(wi, wl) P*(mp) for each wl  Xs and (mp, ml) P*(wi) for each ml Yq. For every 
other pair of indices i1, p1 [n] satisfying the equality (i1) = p1, we use a similar ar-
gument to produce a set P* = {P*(m1), ..., P

*(mn), ..., P
*(w1), ..., P

*(wn)} that satisfies 
the theorem. 

It should be mentioned that marriage markets with all preferences given by simple 
orders are sometimes considered in the literature as markets with linear preferences 
and ties. Individuals in such markets are indifferent between some elements. 

Above we indicated a connection between any marriage market with preferences 
given by partial orders and some set of markets with preferences given by linear or-
ders. It was shown in [1] that the linearity of preferences guarantees the existence of 
a non-trivial lower bound on the number of unstable matchings. The ratio of this 
bound to the number n! of all possible matchings tends to 1/4 when n tends to infinity. 
We have no such conclusion if for at least one man or at least one woman the prefer-
ences for potential spouses are given by a non-linear order. One specific situation oc-
curs when for each woman any two men are incomparable and for each man any two 
women are incomparable. Namely, in this case, any matching is stable. Thus we can-
not guarantee the existence of unstable matchings at all but if they exist, then their 
number can be bounded from below by parameters defined here. The corresponding 
result will be preceded by some helpful definitions. 

For a marriage market (M, W; P) of size n and for i, j [n], let Ai, j(M, W; P) de-
note the set of all tuples (i, j1, i1, j) such that wi, mj is a blocking pair for each matching 
 (i, j1, i1, j). Evidently, Ai, j(M, W; P) = {(i, j1, i1, j): (mj, mj1) P(wi) and (wi, wi1) 
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P(mj) with j  j1 and i  i1}, which means that Ai, j(M, W; P) = ai, jbj, i. Since each 
tuple (i, j1, i1, j) belonging to Ai, j(M, W; P) corresponds to (n – 2)! unstable matchings 
from  (i, j1, i1, j) and because for any two tuples from Ai, j(M, W; P) these sets of un-
stable matchings are disjoint (each of cardinality (n – 2)!) we obtain the following 
fact. 

Remark 1. Let (M, W; P) be a marriage market of size n. If i, j [n], then (M, 
W; P) ≤ n! – (n – 2)!ai, jbj, i. 

Recall that two partial orders 1, 2 over the sets X, Y, respectively, are isomorphic 
if there exists a bijection  : X  Y such that for any, w X we have (v, w) 1 if 
and only if ((), (w)) 2. 

In the next theorem, we use Remark 1 to obtain an upper bound on the number 
max(M, W; P), where the maximum is taken over all marriage markets (M, W; P) of 
size n, in which the partial orders that represent preferences for corresponding women and 
men are pairwise isomorphic. First, we focus on the general case, next we turn our atten-
tion to a special case, thus improving the upper bound obtained using the first approach. 

Theorem 1. (M, W; P) be a marriage market of size n with n ≥ 2 and let for i [n] the 
orderings 1 1( , ..., ), ( , ..., )i i i i

n ns s k k  of [n] satisfy 
1, ,

...i i
ni s i s

a a  and 
1, ,

... .i i
ni k i k

b b  If 

  
  

 
  

/2 1 /2

1 /21 /2

, ,

1 1

,,

min : [ ] when  is even min : when [ ] is even
,

min : when [ ] is oddmin : [ ] when  is odd

i i
n n

ii
nn

i s i k

i ki s

a i n n b i n n
c d

b i n na i n n





      

 

and 

    /2 1/2
,,

2 2

1 1

min : [ ] when  is evenmin : [ ] when  is even
,

when  is odd when  is odd

ii
nn

i ki s
b i n na i n n

c d
c n d n


   

  
 

then (M, W; P) ≤ n! – (n – 2)! max{c1d1, c2d2}. 
Moreover, n! – (n – 2)! max{c1d1, c2d2} is an upper bound on  (M, W; P′) for 

any other marriage market (M, W; P′) of size n such that for each i [n] the partial 
orders P(mi) and P′(mi) are isomorphic and the partial orders P(wi) and P′(wi) are iso-
morphic. 

Proof. First we shall show that the theorem holds for (M, W; P). It is sufficient to 
prove that there exist indices i1, j1, i2, j2  [n] such that ai1,  j1 ≥ c1 and bj1, i1 ≥ d1 while 
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ai2, j2 ≥ c2 and bj2, i2 ≥ d2, before using Remark 1. By symmetry, it is enough to show 
the existence of indices i1, j1. To obtain a contradiction, assume that such indices i1, j1 
do not exist. This means that for any pair of indices (i, j) either ai, j ≤ c1 – 1 or bj, i ≤ d1 
– 1. We define two sets A = {(i, j, ai,j): i, j [n]} and B = {(i, j, bi, j): i, j [n]} and 
a mapping  that assigns the element (j, i, bj, i) from B to the element (i, j, ai, j) from A. 
Evidently, A = B = n2 and  is a bijection. 

In the remaining part of the proof we shall construct two sets E  A and F  B 
such that  maps E to a subset of F and the cardinality of F is less than the cardinality 
of E. Obviously, this contradicts the fact that  is a bijection. 

First consider the case of even n. From the definition of c1 it follows that for each 
i [n], the inequality 

( /2 ) 1
1, i

ni s
a c


 holds. Moreover, 

 1 /2 1, ,
... .i i

ni s i s
a a


  Hence for each 

i [n], the numbers 
 1 /2 1, ,

, ...,i i
ns j s j

b b


do not exceed d1 – 1. Thus the values j in 

 1 /2 1, ,
, ...,i i

ns j s j
b b


satisfy j D, where { : [ ], { /2 1, ..., }}.p

lD k p n l n n     Now the im-

age under  of the set , 1 ( /2) 1{( , , ) : { ], { , ..., }}i i
i j nE i j a i n j s s     of cardinality 

(n2/2) + n is a subset of ,{( , , ) : [ ], }.i jF i j b i n j D    Note that the cardinality of F is 

equal to n2/2, which proves the theorem when n is even. 
We use the same reasoning in the case of an odd n by constructing the same map-

ping , sets A, B and their subsets , 1 ( 1)/2{( , , ) : [ ], { , ..., }}i i
i j nE i j a i n j s s    and 

,{( , , ) : [ ], },i jF i j b i n j D   where { : [ ], {( 3) / 2, ..., }}.p
sD k p n s n n    By the 

definitions of c1, d1, we know that (E)  F. Similarly to the previous case, the cardi-
nality of E equals n(n + 1)/2 and the cardinality of F equals n(n – 1)/2, which contra-
dicts the fact that is a bijection. 

Thus n! – (n – 2)!max{c1d1, c2d2} is an upper bound on (M, W; P). The last 
statement of the theorem follows since all the numbers c1, c2, d1, d2 depend only on the 
shape of the Hasse diagrams and are independent of the assignments of women and 
men to them (isomorphic partial orders produce the same numbers c1, c2, d1, d2). 

We illustrate Theorem 1 using a marriage market (M, W; P) of size 5, where  
P = {P(m1), ..., P(m5), P(w1), ..., P(w5)} (Fig. 2). In this case, the orderings whose ex-
istence is assumed in Theorem 1 could be 1 1

1 5( , ..., )s s = (1, 2, 3, 4, 5), 2 2
1 5( , ..., )s s = (5, 

4, 1, 2, 3), 3 3
1 5( , ..., )s s  = (2, 3, 4, 5, 1), 4 4

1 5( , ..., )s s  = (1, 2, 3, 4, 5), 5 5
1 5( , ..., )s s  = (4, 3, 

2, 5, 1), 1 1
1 5( , ..., )k k  = (3, 1, 5, 2, 4), 2 2

1 5( , ..., )k k  = (1, 5, 4, 3, 2), 3 3
1 5( , ..., )k k  = (5, 1, 4, 

2, 3), 4 4
1 5( , ..., )k k  = (2, 4, 3, 5, 1), 5 5

1 5( , ..., )k k = (1, 5, 2, 3, 4). Next, we have 

1 2 3 5
3 3 3 31, 2, 3, 5,

2
s s s s

a a a a     and 4
34,

1,
s

a   which gives c1 = 1 (5 is an odd number). 

Moreover, 1 2 3 4 5
3 3 3 3 31, 2, 3, 4, 5,

2,
k k k k k

b b b b b     which implies that d1 = 2. Thus, from 
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Theorem 1, we can find at least 12 unstable matchings for (m, W; P) and it does not 
depend on the assignment of the elements from the sets W, M to the vertices of Hasse 
diagrams presented in Fig. 2.  

 

Fig. 2. The Hasse diagrams that represent preferences 

For example, the same number of 12 unstable matchings is guaranteed in the mar-
riage market (M, W; P) of size 5 whose set of preferences P′ = {P′(m1), ..., P′(mn), 
P′(w1), ..., P′(wn)} is given in Fig. 3. 

Corollary 3. Let (M, W; P) be a marriage market of size n such that P = {P(m1), 
..., P(mn), P(w1), ..., P(wn)} and let all the partial orders from P be isomorphic to . 
Next, let  be defined over [n] such that for ei = {j [n]: j  i and (i, j)  }. It fol-
lows that e1 ≥ ... ≥ en. If  

 

   

/2 1 /2

1 /21 /2

, when  is even , when  is even
and

,  when  is odd ,  when  is odd 

n n

nn

e n e n
c d

e ne n





    
 

  

then (M, W; P) ≤ n! – cd(n – 2)!. 
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Fig. 3. The Hasse diagrams that represent preferences 

 

Fig. 4. Hasse diagrams 
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Note that Corollary 3 can be applied if all the partial orders from P are isomor-
phic. One such possibility occurs when the preferences for all women and all men are 
linear. In this case, Corollary 3 implies one of the main results given in [1]. To illus-
trate this corollary using another example, consider an arbitrary marriage market  
(M, W; P) of size n for which all P(mi) and all P(wi) are isomorphic to the one given in 
Fig. 4a. 

Note that the numbers ei defined in Corollary 3 (the indexes i correspond to the ver-
tices of Hasse diagram from Fig. 4a satisfy e1 = 14, e2 = 10, e3 = e4 = 9, e5 = e6 = e7 = 8, 
e8 = 7, e9 = 6, e10 = 5, e11 = 4, e12 = 3, e13 = 2, e14 = 1, e15 = 0. This means that  
c = e(15+1)/2 = e8 = 7. Hence, there exist at least 13! × 49 unstable matchings for the 
market (M, W; P) and this does not depend on the correspondence between the indi-
viduals and the elements from the set [15]. 

Concluding remarks 

It is worth noting that the upper bound on the number of stable matchings derived 
in this paper depends on the number of individuals that are worse than given partici-
pants of the marriage market. A detailed analysis of the numbers c1, c2, d1, d2 or c, d, 
respectively, leads to the conclusion that the value of this bound is very dependent on 
the participants who occupy central positions in the preference orderings. For a better 
understanding of this fact, let us consider four classes of marriage markets of size 15. 
The first, where all of the preferences are represented by linear orders, the second, 
where all the partial orders describing preferences are isomorphic to the one from 
Fig. 4a, the third and the fourth where all the partial orders representing preferences 
are isomorphic to those from Figs. 4b and 4c, respectively. 

In the first and second cases, Corollary 3 demonstrates that a randomly selected 
matching is unstable with the probability of at least 49/(14 × 15) = 7/30, in the third 
one with the probability of at least 25/(14 × 15) = 5/42, and in the last one with the 
probability of at least 4/(14 × 15) = 2/105. Thus, the best possible upper bounds corre-
spond to marriage markets in which the worst elements are ordered linearly and any 
incomparable elements are relatively good. 

In [1] the well-known principle of inclusion and exclusion was used to derive an 
exact expression for the number of stable matchings in a marriage market with prefer-
ences given by linear orders. A similar expression can be derived for marriage markets 
with preferences given by arbitrary partial orders. Indeed, in both cases, we count all 
the matchings which do not lie in any of the sets Ai, j. Unfortunately, in the case of 
arbitrary partial orders, it is harder to determine the sets Ai, j, whose cardinalities de-
termine the number of stable matchings. For completeness, we give the desired ex-
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pression, together with the required notions but we omit the proof which is exactly 
analogous to the one presented for the simpler (linear) case. 

Let (M, W; P) be a marriage market of size n and A       ,i j n n   Ai, j (M, W; P). Next, 

let GA be a bipartite graph (X, Y; EA) such that X = {x1, ..., xn}, Y = {y1, ..., yn} and 
EA ={xpyq: ( p, q, i2, j2) A or (i1, j1, p, q) A}. By F(M, W; P) we denote a set 

           , ,, ,{ ( , ; ): ( , ; ) 1i j i ji j n n i j n nA A M W A A M W      P P and (GA) = 1}, where 

(G) is the maximum degree of a vertex in the graph G. Finally, let ( , , )k
sF M W P   

= {A F(M, W; P): A = s and EA = k}. 

Theorem 2. Let n ≥ 2. If (M, W; P) is a marriage market of size n, then 

   
 1

1 2

, ; ) = ! 1 ! , ; )
n n n

s k
s

s k

W n n k F W  


 

     P P   
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